

TABLE OF CONTENTS

Directors and Managers	3
FAQ	4
Awards	5
For Your Health/Customer Resources	6
BWWB Water Sources and System Information	7
The Water Treatment Process	
Definitions and Abbreviations	
2019 Water Quality Data	10-15

CCR: Government Mandated

The Birmingham Water Works Board (BWWB), like all water utilities across the U.S., is required by the EPA to send its customers a Consumer Confidence Report (CCR) each year.

In 1996, Congress amended the Safe Drinking Water Act (SDWA) by adding a provision requiring all community water systems to deliver to their customers an annual water quality report, which contains information on the water system's source water, levels of any detected contaminants, compliance with drinking water rules and other educational information.

In 2019, as in years past, the BWWB met all state and federal regulations for water quality.

The BWWB has open meetings monthly at its main office located at 3600 First Avenue N., Birmingham, AL 35222. Meeting dates and times are posted on our website and at our main office. The Board welcomes public input and comments during its meetings. For questions please call 205-244-4000 or visit www.bwwb.org.

Board of Directors

Ronald A. Mims
Chairman/President

Brenda J. Dickerson, Ph.D. First Vice-Chairwoman
First Vice President

Deborah ClarkSecond Vice-Chairwoman
Second Vice President

William R. Muhammad Secretary-Treasurer

William "Butch" Burbage, Jr., CPAAssistant Secretary-Treasurer

Tommy Joe Alexander Director

Lucien Blankenship, Esq. Director

Brett A. King, Esq. Director

George Munchus, Ph.D. Director

Executive Staff

Michael Johnson, CPA General Manager

Jeffrey F. ThompsonAssistant General Manager
Operations & Technical Services

Derrick Murphy, MEng Assistant General Manager Engineering & Maintenance

Iris Fisher, CPAAssistant General Manager
Finance & Administration

Purification

Jonathan Harris Water Treatment Manager

Consecutive Systems

Johnnie P. Mayfield
Manager
Industrial and Commercial Accounts

EnviroLab, Water Quality, and Regulatory Compliance

Drusilla Hudson, MTh, REM, CESCO Manager EnviroLab, Water Quality, and Regulatory Compliance

Stacy Littleton, REM, CESCO Chief Chemist

Derrick FeltonQA/QC Supervisor

Will T. Moore, IIWater Quality Superintendent

Jarrod Shotts, MSEM, CESCO Regulatory Compliance Specialist

What is the Consumer Confidence Report?

The CCR is an annual report – on the water quality of a particular water system such as the BWWB – required by the Environmental Protection Agency (EPA). The report details and outlines contaminants and their levels in drinking water.

Why am I getting this report?

The BWWB is federally mandated by the EPA to provide this information to you. The Alabama Department of Environmental Management (ADEM) enforces these rules for the EPA. Regulated drinking water substances that were detected during the 2019 calendar year are provided in the report.

Where can I get additional copies of this report?

You may obtain additional copies of the CCR in person at the BWWB's Customer Service Center, by mail (upon request), or online by visiting www.bwwb.org. For questions concerning the CCR, please call *Jarrod Shotts* at 205-244-4206.

Why authorities regulate contaminant levels?

In order to ensure that tap water is safe to drink, the EPA and ADEM prescribe regulations that limit the amount of certain substances in water provided by public water systems.

For whom is this report produced?

The CCR is produced for customers and wholesalers of the BWWB. It provides water quality data that confirms regulatory compliance of our water

The BWWB is committed to providing the highest quality water and service to our customers and our entire service area. As a concerned corporate citizen, we are responsive to the needs of the entire community and strive to maintain, preserve, and conserve our precious water resources in order to ensure adequate water quality and supply for future generations.

CARSON FILTER PLANT

AWPCA Best Operated Plant Award 20.1 – 30 Million Gallons a Day (MGD)
Partnership for Safe Drinking Water President's Award for 4th consecutive year
Water Quality Fluoridation Award from the CDC

AWWA Alabama/Mississippi Section Operator of the Year Award: Stan Brock

PUTNAM FILTER PLANT

AWPCA Award of Excellence for Surface Water Plant Category 20.1 – 30 MGD Partnership for Safe Drinking Water President's Award for 3rd consecutive year ADEM AWOP 8 Year Optimized Plant Award

WESTERN FILTER PLANT

Water Quality Fluoridation Award from CDC

AWPCA Best Operated Plant for Surface Water Category 50.1 - 60 MGD Partnership Award of Excellence Award for 5th consecutive year Water Quality Fluoridation Award from CDC

SHADES MOUNTAIN FILTER PLANT

AWPCA Award of Excellence for Surface Water Category 60+ MGD
Water Quality Fluoridation Award from CDC
ADEM AWOP 8 Year Optimized Plant Award
Partnership for Safe Drinking Water Directors' Award

BIRMINGHAM WATER WORKS BOARD

AWWA Alabama/Mississippi Section Best Tasting Water Award

BWWB DISTRIBUTION SYSTEM

AWPCA Best Operated Distribution System – 100,000+ Meters

TRAINING DEPARTMENT

Birmingham Water Works earned the 6th spot from Training Magazine's Training Top 125 Awards

SECURITY DEPARTMENT

Ranked #10 among Utilities in Security 500 by Security Magazine

Security Manager Scott Starkey recognized as one of "Most Influential People in Security" in 2019

For Your Health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections.

People at risk should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the **Safe Drinking Water Hotline** (1-800-426-4791). For further information, contact the **Jefferson County Health Department** at 205-933-9110.

Customer Resources

CUSTOMER SERVICE, BILLING & LEAKS:

205-244-4000

WATER QUALITY:

205-244-4381

H2O FOUNDATION:

205-244-4390

BIRMINGHAM WATER WORKS BOARD WEBSITE:

WWW.BWWB.ORG

Cover emergency home repairs with HomeServe. Plumbing repair plans include:

Exterior Water Service Line Coverage, Exterior Sewer/ Septic Line Coverage, as well as Interior Plumbing and Draining System Coverage.

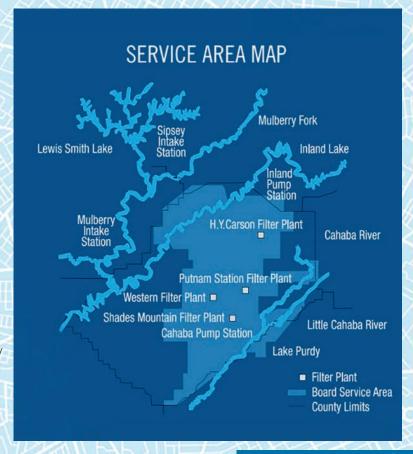
www.bwwbcoverageplans.com

1-855-709-6268

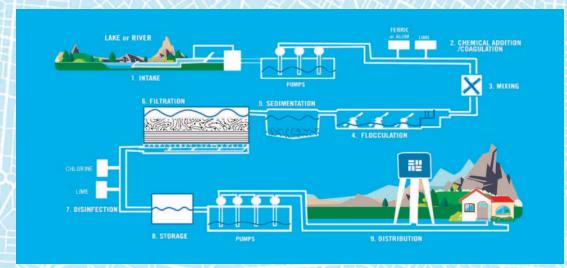
BWWB WATER SOURCES

- Black Warrior Basin
 - Sipsey Fork
 - Mulberry Fork
 - Inland Lake/Blackburn Fork
- Cahaba Basin
 - Big Cahaba River
 - Little Cahaba River
 - Lake Purdy

SYSTEM INFORMATION


- Average gallons of water delivered in 2019: 110.9 MGD
- People Served: 650,000*
- Square miles in service area: 759*
- Miles of water main (pipes) in system: 4,000*

SOURCE WATER ASSESSMENT


A source water assessment has been updated for the water system. It is available for review at the BWWB's main office during normal business hours. The following is a list of the sources of raw water along with potential sources of contamination and the susceptibility rating of the contaminant source.

- Inland Lake low susceptibility (septic tanks); moderate susceptibility (boat launch)
- Cahaba River moderate susceptibility (highways, secondary roads, and railroad)
- Mulberry Fork moderate susceptibility (septic tanks); high susceptibility (strip mining, bridges, industry, and highways)
- Sipsey Fork moderate susceptibility (storm water runoff, industry)

The BWWB is making a maximum effort to physically protect all of our critical assets.

^{*}Approximations

The Water Treatment Process:

- Intake Water is taken from the source. Fish, plants, and other debris are screened out and water is drawn into the treatment plant.
- Chemical Addition/Coagulation Chemicals are added to cause particles in the water to stick together.
- 3. Mixing Water and chemicals are rapidly mixed.
- 4. Flocculation The larger particles are called floc.
- 5. Sedimentation The water and floc particles flow into a sedimentation basin. The floc then settles to the bottom and is removed from the water.

- **6. Filtration** Water flows through filters. The filters are made of layers of anthracite, sand, and gravel.
- Disinfection A small amount of chlorine or other disinfecting chemical is added to kill any remaining germs and keep the water safe as it travels to your house.
- Storage Water is placed in a closed tank or clearwell.
- Distribution Water is transported to your home. The BWWB delivered an average of 110.9 million gallons of water per day in 2019.

DEFINITIONS & ABBREVIATIONS

Action Level (AL) - The concentration of a contaminant that triggers treatment or other requirement a water system shall follow.

Contaminant - Any substance other than water. Note that contaminants, as defined, include dissolved minerals, purifying and dental health promotion additives.

Locational Running Annual Average

(LRAA) - The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

 The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Running Annual Average (RAA) -

Compliance period where an average of four consecutive quarterly samples are used.

Total Haloacetic Acids (HAA) - By-product of drinking water chlorination.

Total Trihalomethanes (TTHM) - By-product of drinking water chlorination.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Turbidity (NTU) - Measure of the clarity of water as it relates to its particle content. Turbidity is measured to determine the amount of particulate matter present in water.

Variance and Exemptions - ADEM or EPA permission not to meet an MCL or treatment technique under certain conditions. **ADEM** - Alabama Department of Environmental Management

CDC - Centers for Disease Control

EPA - Environmental Protection Agency

°F - Degrees Fahrenheit

MGD - Million Gallons per Day

mg/L - Milligrams per liter or parts per million (ppm)

μS/cm - Microsiemens per centimeter

N/A - Not Applicable

ND - Not Detected

NTU - Nephelometric Turbidity Unit

pCi/L - Picocuries per liter

SU - Standard Unit

TOC - Total Organic Carbon

TON - Threshold Odor Number

µg/L - Micrograms per liter or parts per billion (ppb) Total Coliform Bacteria

E. coli

2019 Chemical Analysis

Standard List Of Primary Drinking Water Contaminants for CCR

Primary Drinking Water Standards - Limits are set based on public health effects.

Bacteriological

Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

The highest percentage of bacteria in the distribution system for one month was 0.33% (1 out of 300 samples). All locations that tested total coliform - positive were tested for *E. coli*. *E. coli* was not detected in any of these samples. All locations that tested total coliform - positive were resampled and all resamples were negative.

Distribution System Microbiological Substance (Regulated)

Primar\		

Inorganic Chemicals a	nd Radiologic	als	Regulated Organic Chemicals		Regulated Organic Chemicals			Regulated Organic Chemicals			
Parameters (mg/L)	MCL	Highest	Parameters (μg/L)	MCL	Highest	Parameters (μg/L)	MCL	Highest	Parameters (μg/L)	MCL	Highest
Antimony	0.006	ND	1,1 Diclorothylene	7	ND	Dichloromethane	5	ND	PCB, 1254	0.5	ND
Arsenic	0.01	ND	1,1,1 Trichloroethane	200	ND	Dinoseb	7	ND	PCB, 1260	0.5	ND
Barium	2	0.026	1,1,2 Trichloroethane	5	ND	Diquat	20	ND	p-Dichlorobenzene	75	ND
Beryllium	0.004	ND	1,2 Dichloroethane	5	ND	Endothall	100	ND	Pentachlorophenol	1	ND
Cadmium	0.005	ND	1,2 Dichloropropane	5	ND	Endrin	2	ND	Picloram	500	ND
Chlorine	MRDL = 4	3.58	1,2,4-Trichlorobenzene	70	ND	Ethylbenzene	700	ND	Simazine	4	ND
Chromium	0.1	ND	2,4,5-TP (Silvex)	50	ND	Ethylene Dibromide (EDB)	0.05	ND	Styrene	100	ND
Copper	AL = 1.3	0.055	2,4-D	70	ND	Glyphosate	700	ND	Tetrachloroethylene	5	ND
Cyanide	0.2	ND	Alachlor	2	ND	Heptachlor	0.4	ND	Toluene	1000	ND
Fluoride	4	0.70	Atrazine	3	ND	Heptachlor Epoxide	0.2	ND	Total Haloacetics Acids	60	33.1
Gross Alpha (pCi/L)	15	ND	Benzene	5	ND	Hexachlorobenzene	1	ND	Total Trihalomethanes	80	26.3
Lead	AL = 0.015	ND	Benzo(a)pyrene	0.2	ND	Hexachlorocyclopentadiene	50	ND	Toxaphene	3	ND
Mercury	0.002	ND	Carbofuran	40	ND	Lindane	0.2	ND	Trans-1,2 Dichloroethylene	100	ND
Nitrate as N	10	0.51	Carbon Tetrachloride	5	ND	Methoxychlor	40	ND	Trichloroethylene	5	ND
Nitrite as N	1	ND	Chlordane	2	ND	o-Dichlorobenzene	600	ND	Vinyl Chloride	2	ND
Radium 226 (pCi/L)	5	0.3	Chlorobenzene	100	ND	Oxamyl (Vydate)	200	ND	Xylenes	10,000	ND
Radium 228 (pCi/L)	5	ND	Cis-1,2 Dichloroethylene	70	ND	PCB, 1016	0.5	ND	TOC Step Removal	for Filter Plants	3
Selenium	0.05	ND	Dalapon	200	ND	PCB, 1221	0.5	ND	Total Organic Carbon (TOC)	TT	1
Thallium	0.002	ND	Di (2-Ethylhexyl) Adipate	400	ND	PCB, 1232	0.5	ND	RAA for System Wi	de Stage 2 Sites	
Total Nitrate/Nitrite	10	0.51	Di (2-Ethylhexyl) Phthalate	6	ND	PCB, 1242	0.5	ND	Total Haloacetic Acids	60	35.2
Turbidity (NTU)	0.3 (TT)	0.47	Dibromochloropropane	0.2	ND	PCB, 1248	0.5	ND	Total Trihalomethanes	80	43.6

			hemical Analys				
		Detected Regulated Dr					
		Primary Drinking Water Standard	ls - Limits are set base Bacteriological	ed on public health eff	ects.		
	MCLG	MCL	Bacteriological		Major Sources in Drinking Water		
Total Coliform Bacteria	N/A	TT	Naturally present in the environment				
E. coli	0	Routine and repeat samples are total coliform-positive and either is <i>E. coli</i> -positive or system fails to take repeat samples following <i>E. coli</i> -positive routine sample or system fails to analyze total coliform-positive repeat sample for <i>E. coli</i> .	The highest percentage of bacteria in the distribution system for one month was 0.33% (1 out of 300 samples). All locations that tested total coliform-positive were tested for <i>E. coli. E. coli</i> was not detected in any of these samples. All locations that tested total coliform - positive were resampled and all resamples were negative.		Human and animal fecal waste		
		Inorganic Cl	hemicals and Radio	ological			
Parameters (mg/L)	MCLG	MCL	Highest	Range	Major Sources in Drinking Water		
Barium	2	2	0.026	ND - 0.026	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
Chlorine	MRDLG = 4	MRDL = 4	3.58	1.45 - 3.58	Water additive used to control microbes		
Copper	1.3	AL = 1.3	0.055 ND - 0.055		Corrosion of household plumbing systems; erosion of natural deposits		
Fluoride	4	4			Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories		
Nitrate as N	10	10	0.51 0.29 - 0.51		Runoff from fertilizer; leaching from septic tanks and sewage; erosion of na deposits		
Radium 226 (pCi/L)	0	5			Erosion of natural deposits		
Total Nitrate/Nitrite	10	10			Runoff from fertilizer; leaching from septic tanks and sewage; erosion of natura deposits		
Turbidity (NTU)	N/A	0.3 (TT)	0.47	0.01 - 0.47	Soil runoff		
		Regulate	ed Organic Chemic	als			
Parameters (µg/L)	MCLG	MCL	Highest	Range	Major Sources in Drinking Water		
Total Haloacetic Acids	N/A	60	33.1	9.00 - 33.1	By-product of drinking water chlorination		
Total Trihalomethanes	N/A	80	26.3	11.0 - 26.3	By-product of drinking water chlorination		
		Running Annual Aver	rage for System Wi	de Stage 2 Sites			
Parameters (µg/L)	MCLG	MCL	RAA	Range	Major Sources in Drinking Water		
Total Haloacetic Acids	N/A	System-wide Running Annual Average (RAA): 60 µg/L	35.2 13.1 - 59.4		By-product of drinking water chlorination		
Total Trihalomethanes	N/A	System-wide Running Annual Average (RAA): 80 μg/L	43.6 13.0 - 83.4		By-product of drinking water chlorination		
		, , ,	Removal for Filter F	Plants			
TOC Percent Removal	MCLG	MCL	Highest	Range	Major Sources in Drinking Water		
Total Organic Carbon (TOC)	N/A	TT	1	1	Naturally present in the environment		

2019 Chemical Analysis Secondary Drinking Water Standards

Limits are set based on cosmetic or aesthetic effects.									
Parameters (mg/L)	MCL	Highest	Range	Major Sources in Drinking Water					
Aluminum	0.05 - 0.2	0.041	0.007 - 0.041	By-product of drinking water treatment					
Calcium	Monitored	56.1	12.6 - 56.1						
Chloride	250	10.1	3.57 - 10.1						
Copper	1	0.055	ND - 0.055						
Langlier Index (LSI)	Non-corrosive	-0.207	-1.87 to -0.207						
Magnesium	Monitored	7.76	2.90 - 7.76						
Manganese	0.05	0.002	ND - 0.002						
pH (SU)	6.5 - 8.5	8.83	7.41 - 8.83						
Potassium	Monitored	2.77	1.46 - 2.77						
Sodium	Monitored	10.8	1.52 - 10.8						
Specific Conductivity (µS/cm)	Monitored	371	115 - 371						
Sulfate	250	69.1	19.3 - 69.1						
TDS	500	235	70.0 - 235						
Temperature (°F)	Monitored	81	51 - 81						
Total Alkalinity	Monitored	86	20 - 86						
Total Hardness	Monitored	126	48 - 126						
Zinc	5	0.012	ND - 0.012						
		Monitor	ing						
Nickel	0.1	0.004	ND - 0.004	Discharge from nickel smelting/refining and steelworks industries					
	Unregulate	ed Organic Cor	ntaminants Detecte	d					
Parameters (μg/L)	MCL	Highest	Range	MCLG					
Bromodichloromethane	Monitored	7.04	2.19 - 7.04	0					
Chloroform	Monitored	22.8	6.16 - 22.8	70					
Dibromochloromethane	Monitored	1.90	ND - 1.90	60					
Dichloroacetic Acid	Monitored	18.7	6.03 - 18.7	0					
Monochloroacetic Acid	Monitored	1.10	ND - 1.10	70					
Trichloroacetic Acid	Monitored	14.5	2.89 - 14.5	20					

2019 Chemical Analysis Undetected Contaminants

Unregulated Organic

Parameters (µg/L)	MCLG	Parameters (µg/L)	MCLG	Parameters (µg/L)	MCLG
1,1,1,2-Tetrachloroethane	0	Bromoform	0	Monobromoacetic Acid	N/A
1,1,2,2-Tetrachloroethane	0	Bromomethane	0	Naphthalene	0
1,1-Dichloroethane	0	Butachlor	0	n-Butylbenzene	0
1,1-Dichloropropene	0	Carbaryl	0	n-Propylbenzene	0
1,2,3-Trichlorobenzene	0	Chloroethane	0	o-Chlorotoluene	0
1,2,3-Trichloropropane	0	Chloromethane	0	p-Chlorotoluene	0
1,2,4-Trimethylbenzene	0	Dibromoacetic Acid	N/A	p-Isopropyltoluene	0
1,3,5-Trimethylbenzene	0	Dibromomethane	0	Propachlor	0
1,3-Dichlorobenzene	0	Dicamba	0	Propoxur	0
1,3-Dichloropropane	0	Dichlorodifluoromethane	0	sec-Butylbenzene	0
1,3-Dichloropropene	0	Dieldrin	0	tert-Butylbenzene	0
2,2-Dichloropropane	0	Fluorotrichloromethane	0	Secondary Parameters (mg/L)	MCL
3-Hydroxycarbofuran	0	Hexachlorobutadiene	0	Bromide	Monitored
Aldicarb	0	Isopropylbenzene	0	Carbon Dioxide	Monitored
Aldicarb Sulfone	0	Methiocarb	0	Foaming Agent	0.5
Aldicarb Sulfoxide	0	Methomyl	0	Iron	0.3
Aldrin	0	Methyl Tertiary Butyl Ether	0	Silver	0.1
Bromobenzene	0	Metolachlor	0	Color, APHA (color units)	15
Bromochloromethane	0	Metribuzin	0	Odor (TON)	3

2019 Chemical Analysis Consecutive System Meters									
Meters	Total Haloacetic Acids (HAA5) (μg/L)		• Hainacetic Acids		Total Trihalomethanes (TTHM) (μg/L)				
	Highest	Range	Average per Site	Highest	Range	Average per Site			
West Jefferson - 4251 Flat Top Road, 35073	34.1	21.3 - 34.1	27.3	38.2	22.1 - 38.2	29.0			
Brookside #1 - 1298 Brookside Coalburg Road, 35181	33.3	18.5 - 33.3	26.5	30.9	20.4 - 30.9	24.1			
Brookside #2 - 2299 Roberta Road, 35214	35.5	18.8 - 35.5	26.5	28.5	14.5 - 28.5	21.5			
Pine Bluff #1 - 22495 State Highway 79, 35172	39.6	34.1 - 39.6	37.3	28.2	18.8 - 28.2	24.8			
Pine Bluff #2 - 9 Good News Road, 35172	37.9	34.7 - 37.9	36.4	28.0	14.1 - 28.0	23.5			
SCO - 3535 Colonnade Parkway, 35243	28.2	14.3 - 28.2	22.4	38.8	14.4 - 38.8	24.8			
Mulga #1 - 316 Templeton Road, 35218	33.5	19.5 - 33.5	26.9	23.5	15.7 - 23.5	18.0			
Mulga #2 - 601 Pleasant Grove Road, 35127	38.2	18.4 - 38.2	31.8	41.4	18.3 - 41.4	33.5			
Graysville #1 - 2395 Forestdale Blvd, 35214	33.4	18.1 - 33.4	26.0	25.2	12.8 - 25.2	17.8			
Graysville #2 - 4251 Flattop Road, 35073	35.4	21.2 - 35.4	27.3	43.1	22.7 - 43.1	30.5			
Remlap - 942 Ridgewood Drive, 35133	51.3	35.1 - 51.3	41.5	38.3	19.7 - 38.3	29.2			
UAB/VA - 1813 6th Avenue South, 35233	27.9	12.1 - 27.9	21.9	32.2	10.7 - 32.2	23.4			

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Birmingham Water Works Board (BWWB) is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The BWWB uses acrylamide based polymers in its solids handling operations.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. BWWB did not maintain an adequate inventory of lead service lines and tier 1 sites for sampling purposes. During 2016 Lead and Copper Compliance Sampling, we did not test samples collected solely from tier 1 sites and we did not test at least 50% of samples from lead service lines and therefore cannot be sure of the quality of your drinking water during that time.

On June 27, 2019, BWWB entered into a consent order with ADEM to address the record keeping and sampling procedures for BWWB's Lead and Copper Sampling. BWWB was required by ADEM to create and keep current inventory of our lead services. This inventory will be made available to the customers via the BWWB's website. The customer will be notified of the location on the website of the inventory availability by bill, CCR, direct mailer, and/or other means. This inventory will be updated periodically until BWWB has identified all lead services within BWWB service area up to June 2022.

The most recent testing for Lead and Copper Compliance within the distribution system was from July – December 2019. This testing was done in accordance with applicable regulations. The 90th percentile lead sample was 0.001 mg/L. No lead samples exceeded the action level. The 90th percentile copper sample was 0.131 mg/L. No copper samples exceeded the action level.

PRSRT STD US Postage PAID Birmingham, AL Permit #1789

An electronic, as well as a Spanish version of this document is available at www. bwwb.org. Click Water Quality Report to see the reports available for download.

Una versión electrónica, así como en español, de este documento está disponible en www.bwwb.org. Haga clic en la Calidad del Agua para ver los informes disponibles para su descargar.