

BOARD OF DIRECTORS

Sherry W. Lewis

Chairwoman/President

Tommy Joe Alexander

First Vice-Chairman/ First Vice President

Deborah Clark

Second Vice-Chairwoman/ Second Vice President

Brett A. King, Esq.

Secretary-Treasurer

William "Butch" Burbage, Jr., C.P.A.

Assistant Secretary-Treasurer

Ronald A. Mims

Director

George Munchus, Ph.D.

Director

William R. Muhammad

Director

Brenda J. Dickerson, Ph.D.

Director

EXECUTIVE STAFF

Mac Underwood, CPA

General Manager

Darryl R. Jones, P.E.

Assistant General Manager Operations and Technical Services

T.M. "Sonny" Jones, IV, P.E.

Assistant General Manager Engineering and Maintenance

Michael Johnson, CPA

Assistant General Manager Finance and Administration

ENVIROLAB MANAGEMENT

Drusilla Hudson, CESCO, REM, MTh

Manager of EnviroLab, Water Quality and Regulatory Compliance

Stacy Littleton, CESCO, REM

Chief Chemist

Derrick Felton

QA/QC Supervisor

REGULATORY COMPLIANCE

Jarrod Shotts, MSEM, CESCO

Regulatory Compliance Specialist

PURIFICATION

Floyd Stephens

Water Treatment Manager

WATER QUALITY OPERATIONS

Will T. Moore, II

Water Quality Superintendent

Johnnie P. Mayfield

Industrial and Commercial Account Superintendent

The Birmingham Water Works Board has open meetings monthly at its main office located at 3600 First Avenue N., Birmingham, AL 35222. Meeting dates and times are posted on our web site and at our main office. The Board welcomes public input and comments during its meetings.

For questions, please call 205-244-4000 or visit www.bwwb.org.

CCR: GOVERNMENT MANDATED

The Birmingham Water Works Board (BWWB), like water utilities across the U.S., is required by the EPA to send its customers the Consumer Confidence Report (CCR) each year.

In 1996, Congress amended the Safe Drinking Water Act (SDWA) by adding a provision requiring all community water systems to deliver to their customers an annual water quality report, which contains information on the water system's source water, levels of any detected contaminants, compliance with drinking water rules and other educational information.

In 2016, as in years past, the BWWB met all state and federal regulations for water quality.

The Alabama Water Pollution Control Association recognized the Birmingham Water Works Board with the following awards in 2016:

"Best Operated Plant" in the Greater than 60 Million Gallons per Day Category to the Shades Mountain Filter Plant

"Best Operated Plant" in the 50.1-60.0 Million Gallons per Day Category to the Western Filter Plant

"Award of Excellence" in the 20.1-30.0 Million Gallons per Day Category to the Putman Filter Plant

"Award of Excellence" in the 20.1-30.0 Million Gallons per Day Category to the Carson Filter Plant

INSIDE THIS REPORT

	Treated	2
,	What You Need To Know	3
	BWWB Misson	4
	For Your Heath	5
	Source Water Assessment	
	Tested	9
	Delivered	10
	Definitions	11
	2016 Water Quality Data	12-2

TREATED. TESTED. DELIVERED.

The BWWB's system contains water intakes, treatment plants and numerous pump stations, in addition to other facilities that are maintained and repaired on a daily basis.

Please read on to learn how your water is **Treated** following industry-leading practices, **Tested** to ensure the highest of quality, and **Delivered** on time, on demand.

The American Water Works Association's Partnership for Safe Water recognized the Birmingham Water Works Board with the following awards in 2016:

Director's Award for Treatment Program to the Shades Mountain Filter Plant

President's Award for Water Treatment to the Carson Filter Plant 1

INTAKE

Water is taken from the source. Fish, plants and other debris are screened out and water is drawn into the treatment plant.

Follow our Water

WHAT YOU NEED TO KNOW

What is the Consumer Confidence Report?

The CCR is an annual report – on the water quality of a particular water system such as the BWWB – required by the Environmental Protection Agency (EPA). The report details and outlines contaminants and their levels in drinking water.

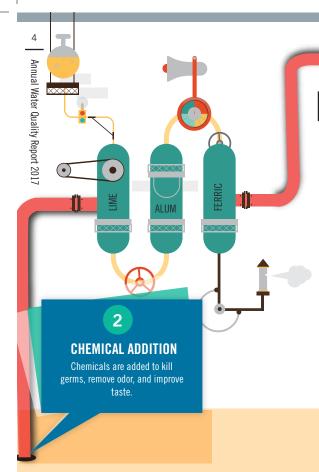
Why am I getting this report?

The BWWB is federally mandated by the EPA to provide this information to you. The Alabama Department of Environmental Management (ADEM) enforces these rules for the EPA. Regulated drinking water substances that were detected during the 2016 calendar year are provided in the report.

Where can I get additional copies of this report?

You may obtain additional copies of the CCR in person at the BWWB's Customer Service Center, by mail (upon request) or online by visiting www.bwwb.org. For questions concerning the CCR, please call Jarrod Shotts at 205-244-4206.

Why authorities regulate contaminant levels?


In order to ensure that tap water is safe to drink, the EPA and ADEM prescribe regulations that limit the amount of certain substances in water provided by public water systems.

For whom is this report produced?

The CCR is produced for customers and wholesalers of the BWWB and ensures that everyone is provided safe drinking water.

How much does it cost to receive this report?

This report is free of charge to all customers and stakeholders of the BWWB.

MISSION

The BWWB is committed to providing the highest quality water and service to our customers and our entire service area. As a concerned corporate citizen, we are responsive to the needs of the entire community and strive to maintain, preserve, and conserve our precious water resources in order to ensure adequate water quality and supply for future generations.

The Alabama/Mississippi Section of the American Water Works Association recognized the Birmingham Water Works Board with the following awards in 2016 for Alabama:

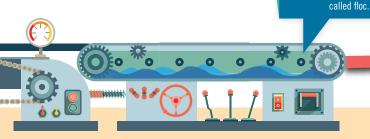
Distribution System of the Year

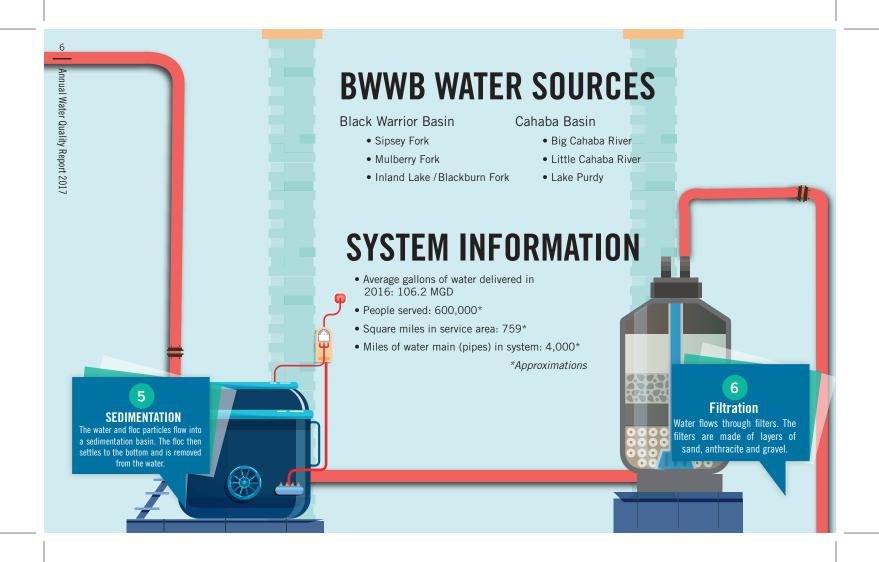
Water Treatment Plant of the Year to the Western Filter Plant

Operator of the Year to Michael Walton

FOR YOUR HEALTH

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.


The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.


Some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised, such as cancer patients undergoing chemotherapy, organ transplant recipients, people with HIV/AIDS or other immune system disorders, some elderly people and infants can be particularly at risk for infection.

People at risk should seek advice about drinking water from their health care providers. EPA / CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791. For further information, contact the Jefferson County Health Department at 205-933-9110.

COAGULATION & FLOCCULATION
The particles stick together
and form larger particles

MIXING
Water and chemicals are rapidly mixed.

SOURCE WATER ASSESSMENT

A source water assessment has been updated for the water system. It is available for review at the BWWB's main office during normal business hours. The following is a list of the sources of raw water along with the susceptibility rating of the contaminant source and the contaminant sources:

- Inland Lake low susceptibility (septic tank); moderate susceptibility (boat launch)
- Cahaba River moderate susceptibility (highways, secondary roads and railroad)
- Mulberry Fork moderate susceptibility (septic tanks); high susceptibility (strip mining, bridge and highway)
- Sipsey Fork moderate susceptibility (storm water runoff)


The BWWB is making a maximum effort to physically protect all of our critical assets.

Located on BWWB's main campus, the Envirolab is the largest utility-owned, certified laboratory in Alabama. The laboratory is equipped to perform microbiological, organic, and inorganic testing required by ADEM and the EPA.

Throughout the year, chemists and technicians analyze more than 100,000 water quality tests on samples collected from our water sources, filter plants and distribution system. Daily, the Envirolab collects drinking water samples throughout our service area ensuring that the water quality is continuously held to the safest and highest standards. It is the Envirolab's goal to ensure the quality of water supplied to BWWB's customers exceeds all company criteria and governmental regulations.

Annual Water Quality Report 2017

DEFINITIONS

- Action Level (AL) The concentration of contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **Contaminant** Any substance other than water. Note that contaminants, as defined, include dissolved minerals, purifying and dental health promotion additives.
- **Locational Running Annual Average (LRAA)** The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.
- Maximum Contaminant Level (MCL) The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- Maximum Residual Disinfectant Level Goal (MRDLG) The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminantion.
- Running Annual Average (RAA) Compliance period where an average of four consecutive quarterly samples are used.
- Total Haloacetic Acids (HAA₅) By-product of drinking water chlorination.
- **Total Trihalomethanes (TTHM)** By-product of drinking water chlorination.
- **Treatment Technique (TT)** A required process intended to reduce the level of a contaminant in drinking water.
- **Turbidity (NTU)** Measure of the clarity of water as it relates to its particle content.
- Variance and exemptions ADEM or EPA permission not to meet an MCL or treatment technique under certain conditions.

ABBREVIATIONS

- **ADEM** Alabama Department of Environmental Management
- **CDC** Centers for Disease Control
- **EPA** Environmental Protection Agency
- °F Degrees Fahrenheit
- mg/L Milligrams per liter or parts per million (ppm)
- **μS/cm** Microsiemens per centimeters
- NA Not Applicable
- ND Not Detected
- NTU Nephelometric Turbidity Unit
- pCi/L Picocuries per liter
- SU Standard Unit
- TOC Total Organic Carbon
- TON Threshold Odor Number
- **μg/L** Micrograms per liter or parts per billion (ppb)

2016 WATER QUALITY DATA

2016 Chemical Analysis

Standard List Of Primary Drinking Water Contaminants for CCR

Primary Drinking Water Standards - Limits are set based on public health effects.

		Bacteriological
	MCL	Distribution System Microbiological Substance (Regulated)
	Presence of	The highest percentage of bacteria in the distribution system for one month was 0.96% (3
Total Coliform Bacteria	Coliform bacteria	out of 311 samples). All locations that tested total coliform - positive were tested for E. coli.
Total Collotti Bacteria	is < 5% of	E. coli was not detected in any of these samples. All locations that tested total coliform -
	monthly samples	positive were resampled and all resamples were negative.
		Ingraphic Chemicals and Dadiological

		Inorganic Chemical	s and Radiological		
		Carson	Putnam	Shades Mountain	Western
Parameters (mg/L)	MCL	Highest	Highest	Highest	Highest
Antimony	0.006	ND	ND	ND	ND
Arsenic	0.01	ND	ND	ND	ND
Barium	2	0.019	0.018	0.028	0.031
Beryllium	0.004	ND	ND	ND	ND
Cadmium	0.005	ND	ND	ND	ND
Chlorine	4	2.70	2.13	2.53	2.91
Chromium	0.1	ND	ND	ND	ND
Copper	AL = 1.3	0.002	0.001	0.045	0.003
Cyanide	0.2	ND	ND	ND	ND
Fluoride	4	0.57	0.67	0.66	0.60
Gross Alpha (pCi/L)	15	ND	ND	ND	ND
Lead	AL = 0.015	ND	ND	ND	ND
Mercury	0.002	ND	ND	ND	ND
Nitrate as N	10	0.31	0.33	0.34	0.47
Nitrite as N	1	ND	ND	ND	ND
Radium 226 (pCi/L)	5	ND	ND	ND	0.2
Radium 228 (pCi/L)	5	ND	ND	ND	ND
Selenium	0.05	ND	ND	ND	ND
Thallium	0.002	ND	ND	ND	ND
Total Nitrate/Nitrite	10	0.31	0.33	0.34	0.47
Turbidity (NTU)	0.3 (TT)	0.17	0.30	0.19	0.24

		Regulated Orga	nic Chemicals		
		Carson	Putnam	Shades Mountain	Western
Parameters (µg/L)	MCL	Highest	Highest	Highest	Highest
1,1 Dichloroethylene	7	ND	ND	ND	ND
1,1,1 Trichloroethane	200	ND	ND	ND	ND
1,1,2 Trichloroethane	5	ND	ND	ND	ND
1,2 Dichloroethane	5	ND	ND	ND	ND
1,2 Dichloropropane	5	ND	ND	ND	ND
1,2,4-Trichlorobenzene	70	ND	ND	ND	ND
2,4,5-TP (Silvex)	50	ND	ND	ND	ND
2,4-D	70	ND	ND	ND	ND
Alachlor	2	ND	ND	ND	ND
Atrazine	3	ND	ND	ND	ND
Benzene	5	ND	ND	ND	ND
Benzo(a)pyrene	0.2	ND	ND	ND	ND
Carbofuran	40	ND	ND	ND	ND
Carbon Tetrachloride	5	ND	ND	ND	ND
Chlordane	2	ND	ND	ND	ND
Chlorobenzene	100	ND	ND	ND	ND
Cis-1,2 Dichloroethylene	70	ND	ND	ND	ND
Dalapon	200	ND	ND	ND	ND
Di (2-Ethylhexyl) Adipate	400	ND	ND	ND	ND
Di (2-Ethylhexyl) Phthalate	6	ND	ND	ND	ND
Dibromochloropropane	0.2	ND	ND	ND	ND
Dichloromethane	5	ND	ND	ND	ND
Dinoseb	7	ND	ND	ND	ND
Diquat	20	ND	ND	ND	ND
Endothall	100	ND	ND	ND	ND
Endrin	2	ND	ND	ND	ND
Ethylbenzene	700	ND	ND	ND	ND
Ethylene Dibromide (EDB)	0.05	ND	ND	ND	ND
Glyphosate	700	ND	ND	ND	ND
Heptachlor	0.4	ND	ND	ND	ND
Heptachlor Epoxide	0.2	ND	ND	ND	ND
Hexachlorobenzene	1	ND	ND	ND	ND
Hexachlorocyclopentadiene	50	ND	ND	ND	ND
Lindane	0.2	ND	ND	ND	ND
Methoxychlor	40	ND	ND	ND	ND
o-Dichlorobenzene	600	ND	ND	ND	ND

Regulated Organic Chemicals Oxamyl (Vydate) ND ND ND ND ND ND ND ND ND N											
Oxamyl (Vydate)	200	ND	ND	ND	ND						
PCB, 1016	0.5	ND	ND	ND	ND						
PCB, 1221	0.5	ND	ND	ND	ND						
PCB, 1232	0.5	ND	ND	ND	ND						
PCB, 1242	0.5	ND	ND	ND	ND						
PCB, 1248	0.5	ND	ND	ND	ND						
PCB, 1254	0.5	ND	ND	ND	ND						
PCB, 1260	0.5	ND	ND	ND	ND						
p-Dichlorobenzene	75	ND	ND	ND	ND						
Pentachlorophenol	1	ND	ND	ND	ND						
Picloram	500	ND	ND	ND	ND						
Simazine	4	ND	ND	ND	ND						
Styrene	100	ND	ND	ND	ND						
Tetrachloroethylene	5	ND	ND	ND	ND						
Toluene	1000	ND	ND	ND	ND						
Total Haloacetics Acids	60	24.0	9.43	23.0	25.4						
Total Trihalomethanes	80	18.4	12.4	28.1	62.1						
Toxaphene	3	ND	ND	ND	ND						
Trans-1,2 Dichloroethylene	100	ND	ND	ND	ND						
Trichloroethylene	5	ND	ND	ND	ND						
Vinyl Chloride	2	ND	ND	ND	ND						
Xylenes	10,000	ND	ND	ND	ND						
			System Wide Stag	e 2 Sites							
	MCL	RAA									
Total Trihalomethanes (µg/L)	System-wide Running Annual Average (RAA): 80 µg/L	38.1									
Total Haloacetic Acids (µg/L)	System-wide Running Annual Average (RAA): 60 µg/L	24.8									
		OC Step Removal									
	MCL	Carson	Putnam	Shades Mountain	Western						
Total Organic Carbon (TOC)	4 (TT)	1.00	1.00	1.00	1.00						

2016 Chemical Analysis Regulated Drinking Water Contaminants for CCR MCLG MCL Primary Drinking Water Standards - Limits are set based on public health effects. Major Sources in Drinking Water														
	MCLG	MCL	Pri							fects.	Major Sources in Drinking Water			
Total Coliform Bacteria	0	Presence of Coliform bacteria is < 5% of monthly samples	locations that	tested total colifo	orm - positive	stribution system were tested for <i>E</i> were resampled a	. coli. E. coli	was not detected	d in any of the		Naturally present in the environment. Human and animal fecal waste			
				rson		tnam		Mountain		estern				
Parameters (mg/L)	MCLG	MCL	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Major Sources in Drinking Water			
Antimony	0.006	0.006	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder Erosion of natural deposits; runoff from orchards; runoff from			
Arsenic	0	0.01	ND	ND	ND	ND	ND	ND	ND	ND	glass and electronics production wastes			
Barium	2	2	0.019	0.018 - 0.019	0.018	0.014 - 0.018	0.028	0.018 - 0.028	0.031	0.019 - 0.031	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits			
Beryllium	0.004	0.004	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace and defense industries			
Cadmium	0.005	0.005	ND	ND	ND	ND	ND	ND	ND	ND	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints			
Chlorine	4	4	2.70	1.55 - 2.70	2.13	1.62 - 2.13	2.53	1.53 - 2.53	2.91	1.57- 2.91	Water additive used to control microbes			
Chromium	0.1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from steel and pulp mills; erosion of natural deposits			
Copper	1.3	AL = 1.3	0.002	0.002	0.001	ND - 0.001	0.045	0.013 - 0.045	0.003	0.002 - 0.003	Corrosion of household plumbing systems; erosion of natural deposits			
Cyanide	0.2	0.2	ND ND		ND	ND	ND	ND	ND	ND	Discharge from steel/ metal factories; discharge from plastic and fertilizer factories			
Fluoride	4	4	0.57	0.46 - 0.57	0.67	0.63 - 0.67	0.66	ND - 0.66	0.60	0.45 - 0.60	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories			
Gross Alpha (pCi/L)	0	15	ND	ND	ND	ND	ND	ND	ND	ND	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation			
Lead	0	AL = 0.015	ND	ND	ND	ND	ND	ND	ND	ND	Corrosion of household plumbing; erosion of natural deposits			
Mercury	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands			
Nitrate as N	10	10	0.31	ND - 0.31	0.33	ND - 0.33	0.34	0.29 - 0.34	0.47	ND - 0.47	Runoff from fertilizer; leaching from septic tanks and sewage; erosion of natural deposits			
Nitrite as N	1	1	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from fertilizer; leaching from septic tanks and sewage; erosion of natural deposits			
Radium 226 (pCi/L) Radium 228 (pCi/L)	0	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.2 ND	0.2 ND	Erosion of natural deposits Erosion of natural deposits			
Selenium	0.05	0.05	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines			
Thallium	0.0005	0.002	ND	ND	ND	ND	ND	ND	ND	ND	Leaching from ore-processing sites; discharge from electronics, glass and drug factories			
Total Nitrate/Nitrite	10	10	0.31	ND - 0.31	0.33	ND - 0.33	0.34	0.29 - 0.34	0.47	ND - 0.47	Runoff from fertilizer; leaching from septic tanks and sewage; erosion of natural deposits			
Turbidity (NTU)	N/A	0.3 (TT)	0.17	0.02 - 0.17	0.30	0.02 - 0.30	0.19	0.02 - 0.19	0.24	0.02 - 0.24	Soil runoff			
Parameters (μg/L)				Re	gulated Org	ganic Chemica	ıls				Major Sources in Drinking Water			
1,1 Dichloroethylene	7	7	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from industrial chemical factories			
1,1,1 Trichloroethane	200	200	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from metal degreasing sites and other factories			
1,1,2 Trichloroethane 1,2 Dichloroethane	3	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	Discharge from industrial chemical factories			
	ı U	. 5	עוא ן	שא	ND	I ND	ND	ND	שא	עא ן	Discharge from industrial chemical factories			

Parameters (μg/L)				Re	gulated Org	anic Chemic	als				Major Sources in Drinking Water
1,2,4-Trichlorobenzene	70	70	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from textile-finishing factories
2,4,5-TP (Silvex)	50	50	ND	ND	ND	ND	ND	ND	ND	ND	Residue of banned herbicide
2,4-D	70	70	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide used on row crops
Alachlor	0	2	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide used on row crops
Atrazine	3	3	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide used on row crops
Benzene	0	5	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from factories; leaching from gas storage tanks and landfills
Benzo(a)pyrene	0	0.2	ND	ND	ND	ND	ND	ND	ND	ND	Leaching from linings of water storage tanks and distribution lines
Carbofuran	40	40	ND	ND	ND	ND	ND	ND	ND	ND	Leaching of soil fumigant used on rice and alfalfa
Carbon Tetrachloride	0	5	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from chemical plants and other industrial activities
Chlordane	0	2	ND	ND	ND	ND	ND	ND	ND	ND	Residue of banned termiticide
Chlorobenzene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from chemical and agricultural chemical factories
Cis-1,2 Dichloroethylene	70	70	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from industrial chemical factories
Dalapon	200	200	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide used on rights of way
Di (2-Ethylhexyl) Adipate	400	400	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from chemical factories
Di (2-Ethylhexyl) Phthalate	0	6	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from rubber and chemical factories
Dibromochloropropane	0	0.2	ND	ND	ND	ND	ND	ND	ND	ND	Runoff/ leaching from soil fumigant used on soybeans, cotton, pineapples and orchards
Dichloromethane	0	5	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from pharmaceutical and chemical factories
Dinoseb	7	7	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide used on soybeans and vegetables
Diquat	20	20	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide use
Endothall	100	100	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide use
Endrin	2	2	ND	ND	ND	ND	ND	ND	ND	ND	Residue of banned insecticide
Ethylbenzene	700	700	ND	ND ND	ND	ND	ND	ND	ND	ND	Discharge from petroleum refineries
Ethylene Dibromide (EDB)	0	0.05	ND	ND	ND	ND	ND	ND	ND ND	ND	Discharge from petroleum refineries
Glyphosate	700	700	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from herbicide use
Heptachlor	0	0.4	ND	ND	ND	ND	ND	ND	ND	ND	Residue of banned termiticide
Heptachlor Epoxide	0	0.2	ND	ND	ND	ND	ND	ND	ND	ND	Breakdown of heptachlor
Hexachlorobenzene	0	1	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclopentadiene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from chemical factories
Lindane	0.2	0.2	ND	ND ND	ND	ND	ND	ND	ND	ND	Runoff/ leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	40	40	ND	ND	ND	ND	ND	ND	ND	ND	Runoff/ leaching from insecticide used on fruits, vegetables, alfalfa. livestock
o-Dichlorobenzene	600	600	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from industrial chemical factories
Oxamyl (Vydate)	200	200	ND	ND	ND	ND	ND	ND	ND	ND	Runoff/ leaching from insecticide used on apples, potatoes, and tomatoes
PCB. 1016	0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from landfills; discharge of waste chemicals
PCB. 1221	0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from landfills; discharge of waste chemicals
PCB, 1232	ŏ	0.5	ND	ND ND	ND	ND	ND	ND	ND	ND	Runoff from landfills; discharge of waste chemicals
PCB, 1242	0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from landfills; discharge of waste chemicals
PCB. 1248	0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from landfills: discharge of waste chemicals
PCB. 1254	Ö	0.5	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	Runoff from landfills; discharge of waste chemicals
PCB, 1260	0	0.5	ND	ND	ND	ND	ND	ND	ND	ND	Runoff from landfills; discharge of waste chemicals
p-Dichlorobenzene	75	75	ND	ND ND	ND	ND	ND	ND	ND	ND	Discharge from industrial chemical factories
Pentachlorophenol	0	1	ND	ND ND	ND	ND	ND	ND	ND ND	ND	Discharge from wood preserving factories
Picloram	500	500	ND	ND ND	ND	ND	ND	ND	ND	ND	Herbicide runoff
Simazine	4	4	ND	ND ND	ND	ND	ND	ND	ND	ND	Herbicide runoff
Styrene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	0	5	ND	ND	ND	ND	ND	ND	ND	ND	Leaching from PVC pipes; discharge from factories and dry cleaners

Toluene	1000	1000	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from petroleum factories		
Total Haloacetic Acids	N/A	60	24.0	16.2 - 24.0	9.43	6.65 - 9.43	23.0	10.3 - 23.0	25.4		By-product of drinking water chlorination		
Total Trihalomethanes	N/A	80	18.4	14.9 - 18.4	12.4	9.83 - 12.4	28.1	11.6 - 28.1	62.1	24.2 - 62.1	By-product of drinking water chlorination		
Toxaphene	0	3	ND	ND	ND	ND	ND	ND	ND	ND	Runoff/ leaching from insecticide used on cotton and cattle		
Trans-1,2 Dichloroethylene	100	100	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from industrial chemical factories		
Trichloroethylene	0	5	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from metal degreasing sites and other factories		
Vinyl Chloride	0	2	ND	ND	ND	ND	ND	ND	ND	ND	Leaching from PVC piping; discharge from plastic factories		
Xylenes	10,000	10,000	ND	ND	ND	ND	ND	ND	ND	ND	Discharge from petroleum factories; discharge from chemical factories		
				Ru	nning Annu	ial Average fo	r System W	ide Stage 2 S	Sites				
	MCLG	MCL	RAA								Major Sources in Drinking Water		
Total Trihalomethanes (µg/L)	N/A	System-wide Running Annual Average (RAA): 80 µg/L	38.1								By-product of drinking water chlorination		
Total Haloacetic Acids (µg/L)	N/A	System-wide Running Annual Average (RAA): 60 µg/L	24.8								By-product of drinking water chlorination		
					TOO	Step Remov	al for Filter	Plants					
TOC Percent Removal				son Putnam Shades Mountain Western					Major Sources in Drinking Water				
Total Organic Carbon (TOC)	N/A	4 (TT)	1	.00	1	1.00	1	.00		1.00	Naturally present in the environment		

						Drinking Water Star					
				Carson		d on cosmetic or ae utnam		s. es Mountain	V	/estern	·
Parameters (mg/L)	MCLG	MCL	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Major Sources in Drinking Water
Aluminum	0	0.05 - 0.2	0.017	0.016 - 0.017	0.032	0.013 - 0.032	0.025	0.022 - 0.025	0.044	0.038 - 0.044	By-product of drinking water treatment
Bromide	N/A	Monitored	ND	ND	ND	ND	ND	ND	ND	ND	by-product of drinking water treatment
Calcium	0	Monitored	16.9	14.2 - 16.9	22.0	15.8 - 22.0	50.6	23.7- 50.6	45.8	24.5 - 45.8	
Carbon Dioxide	0	Monitored	ND	ND	ND	ND	1.76	ND - 1.76	1.76	ND - 1.76	
Chloride	0	250	4.33	3.72 - 4.33	3.90	3.85 - 3.90	7.77	5.14 - 7.77	7.48	4.66 - 7.48	
	1 0	250	0.002	0.002			0.045	0.013 - 0.045	0.003	0.002 - 0.003	
Copper	 -				0.001	ND - 0.001					
Foaming Agent	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	
Iron	0	0.3	ND	ND	ND	ND	ND	ND	ND	ND	
Langlier Index (LSI)	N/A	Non-corrosive	-1.03	-1.63 to -1.03	0.319	-0.114 to 0.319	-0.113	-0.393 to -0.113	0.132	-0.647 to 0.132	
Magnesium	N/A	Monitored	3.65	2.89 - 3.65	3.90	2.27 - 3.90	8.42	4.92 - 8.42	10.7	3.19 - 10.7	
Manganese	0	0.05	ND	ND	0.001	ND - 0.001	0.005	0.001 - 0.005	0.005	ND - 0.005	
pH (SU)	0	6.5 - 8.5	8.06	7.52 - 8.06	8.88	8.28 - 8.88	8.30	7.52 - 8.30	8.50	8.18 - 8.50	
Potassium	N/A	Monitored	1.98	1.78 - 1.98	2.20	1.78 - 2.20	2.69	1.32 - 2.69	2.27	1.96 - 2.27	
Silver	0	0.1	ND	ND	ND	ND	ND	ND	ND	ND	
Sodium	0	Monitored	1.86	1.55 - 1.86	2.04	1.64 - 2.04	9.22	7.00 - 9.22	12.8	2.46 - 12.8	
Specific Conductivity (µS/cm)	0	Monitored	157	136 - 157	166	133 - 166	396	192 - 396	389	175 - 389	
Sulfate	0	250	29.1	23.7 - 29.1	29.4	22.9 - 29.4	64.4	34.1 - 64.4	93.5	40.1 - 93.5	
TDS	0	500	92.5	87.5 - 92.5	87.5	80.0 - 87.5	228	103 - 228	243	103 - 243	
Temperature (°F)	N/A	N/A	59	49 - 59	58	50 - 58	84	52 - 84	84	52 - 84	
Total Alkalinity	0	Monitored	30	20 - 30	32	28 - 32	90	48 - 90	54	34 - 54	
Total Hardness	0	Monitored	68	52 - 68	66	56 - 66	152	76 - 152	144	80 - 144	
Zinc	0	5	ND	ND	0.016	ND - 0.016	0.008	0.005 - 0.008	0.006	ND - 0.006	
Color, APHA (color units)	N/A	15 color units	ND	ND	ND	ND	ND	ND	ND	ND	
Odor (TON)	0	3 TON	ND	ND	ND	ND	ND	ND	ND	ND	
						Monitoring					
Nickel	N/A	N/A	0.001	0.001	0.002	0.001 - 0.002	0.003	0.003	0.001	0.001	Discharge from nickel smelting/refining a steelworks industries

					anic Substan lot Detected	ces				
			Car	son	Puti	nam	Shades	Mountain	Wes	tern
Parameters (µg/L)	MCLG	MCL	Highest	Range	Highest	Range	Highest	Range	Highest	Range
1,1,1,2-Tetrachloroethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
3-Hydroxycarbofuran	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Aldicarb	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Aldicarb Sulfone	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Aldicarb Sulfoxide	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Butachlor	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Carbaryl	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Dibromoacetic Acid	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Dicamba	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Fluorotrichloromethane	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Methiocarb	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Methomyl	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Tertiary Butyl Ether	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Metolachlor	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND

Metribuzin	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Monobromoacetic Acid	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
o-Chlorotoluene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
p-Chlorotoluene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Propachlor	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
Propoxur	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	0	Monitored	ND	ND	ND	ND	ND	ND	ND	ND
			Unregulat	ed Organic S	ubstances [Detected				
Bromodichloromethane	0	Monitored	3.18	2.52 - 3.18	2.34	1.92 - 2.34	6.65	2.91 - 6.65	15.4	3.09 - 15.4
Chloroform	0	Monitored	15.6	11.9 - 15.6	10.1	7.91 - 10.1	20.0	8.67 - 20.0	41.7	18.3 - 41.7
Dibromochloromethane	0	Monitored	ND	ND	ND	ND	1.48	ND - 1.48	5.08	ND - 5.08
Dichloroacetic Acid	0	Monitored	11.7	8.07 - 11.7	7.13	4.83 - 7.13	13.8	4.55 - 13.8	16.6	8.58 - 16.6
Monochloroacetic Acid	0	Monitored	1.00	ND - 1.00	ND	ND	ND	ND	ND	ND
Trichloroacetic Acid	0	Monitored	12.0	8.09 - 12.0	2.97	1.82 - 2.97	9.15	5.78 - 9.15	12.1	6.72 - 12.1

- •The most recent testing for Lead and Copper Compliance within the distribution system was from June September 2016. This testing was done in accordance with applicable regulations. The 90th percentile lead sample was 0.001 mg/L. No lead samples exceeded the action level. The 90th percentile copper sample was 0.186 mg/L. No copper samples exceeded the action level.
- •If present, elevated levels of lead can cause serious health problems, especially for pregnant women and

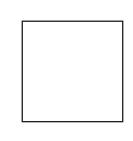
young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Birmingham Water Works Board (BWWB) is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking

water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

- •The BWWB uses acrylamide based polymers in its solids handling operations.
- •Based on a study conducted by ADEM with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

2016 Chemical Analysis Stage 2 Sites

Sites		loroacetic (µg/L)	Monobromoacetic Acid (μg/L)			Dichloroacetic Acid (μg/L)		acetic Acid g/L)		acetic Acid g/L)	Total Haloacetic Acids (HAA₅) (μg/L)		LRAA Total Haloacetic Acids (HAA _s) (µg/L)
	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Average per Site
Carson	1.00	ND - 1.00	ND	ND	11.7	8.07 - 11.7	12.0	8.09 - 12.0	ND	ND	24.0	16.2 - 24.0	20.6
Parade Gas Station Hwy 75	ND	ND	4.00	ND - 4.00	17.0	8.91 - 17.0	15.8	10.1 - 15.8	ND	ND	32.7	19.0 - 32.7	25.2
Putnam	ND	ND	ND	ND	7.13	4.83 - 7.13	2.97	1.82 - 2.97	ND	ND	9.43	6.65 - 9.43	7.98
Birmingham Fire Station #12	ND	ND	ND	ND	10.7	5.78 - 10.7	4.98	2.00 - 4.98	ND	ND	15.7	8.00 - 15.7	10.1
Birmingham Fire Station #30	ND	ND	ND	ND	16.4	11.9 - 16.4	15.9	12.0 - 15.9	ND	ND	32.3	24.0 - 32.3	27.3
New Temple Baptist Church	ND	ND	ND	ND	22.6	13.0 - 22.6	15.6	10.3 - 15.6	ND	ND	34.5	23.4 - 34.5	31.6
Shades Mountain	ND	ND	ND	ND	13.8	4.55 - 13.8	9.15	5.78 - 9.15	ND	ND	23.0	10.3 - 23.0	17.5
Birmingham Fire Station #32	ND	ND	ND	ND	14.0	5.81 - 14.0	12.0	4.43 - 12.0	ND	ND	26.0	10.2 - 26.0	19.2
Highland Lakes Brisstol Lane	ND	ND	ND	ND	23.0	9.89 - 23.0	14.7	6.00 - 14.7	2.00	ND - 2.00	37.7	16.5 - 37.7	25.4
Hoover Fire Station #2	ND	ND	ND	ND	19.0	5.10 - 19.0	13.8	4.24 - 13.8	ND	ND	32.8	9.34 - 32.8	21.8
Moody Fire Station	ND	ND	ND	ND	25.5	13.0 - 25.5	23.5	13.7 - 23.5	ND	ND	48.9	26.6 - 48.9	33.3
Shades Crest Grocery	ND	ND	ND	ND	23.4	6.32 - 23.4	15.6	6.14 - 15.6	ND	ND	39.1	12.5 - 39.1	25.8
Western	ND	ND	ND	ND	16.6	8.58 - 16.6	12.1	6.72 - 12.1	ND	ND	25.4	15.3 - 25.4	21.1
Birmingham Fire Station #18	ND	ND	ND	ND	20.6	8.34 - 20.6	12.3	8.19 - 12.3	1.00	ND - 1.00	32.9	16.5 - 32.9	24.6
Pleasant Grove Post Office	ND	ND	ND	ND	26.1	10.4 - 26.1	13.8	7.32 - 13.8	1.00	ND - 1.00	39.8	17.7 - 39.8	27.9
Shannon Fire Station	ND	ND	ND	ND	20.9	9.27 - 20.9	14.0	7.92 - 14.0	1.00	ND - 1.00	34.5	17.2 - 34.5	25.3
Sites		roform g/L) Range		loromethane g/L) Range		loromethane g/L) Range		oform g/L) Range		lomethanes l) (μg/L) Range	Trihalor (TTHN	A Total nethanes I) (μg/L) e per Site	
C	15.6	11.9 - 15.6	3.18	2.52 - 3.18	ND	ND	ND	ND	18.4	14.9 - 18.4			
Carson	28.9				ND ND	ND ND	ND ND	ND ND	33.1	16.0 - 33.1		6.4	
Parade Gas Station Hwy 75 Putnam	10.1	13.4 - 28.9 7.91 - 10.1	4.20 2.34	2.62 - 4.20 1.92 - 2.34	ND ND	ND ND	ND ND	ND ND	12.4	9.83 - 12.4		1.0 1.6	
Birmingham Fire Station #12	20.9	9.73 - 20.9	3.70	2.15 - 3.70	ND ND	ND ND	ND ND	ND ND	24.6	12.1 - 24.6		1.6 5.8	
Birmingham Fire Station #30	23.4	17.5 - 23.4	4.37	3.33 - 4.37	ND ND	ND ND	ND ND	ND ND	27.8	20.8 - 27.8		5.4	
New Temple Baptist Church	66.3	29.2 - 66.3	6.64	3.99 - 6.64	ND ND	ND ND	ND	ND ND	72.4	33.1 - 72.4		5.1	
Shades Mountain	20.0	8.67 - 20.0	6.65	2.91 - 6.65	1.48	ND - 1.48	ND ND	ND ND	28.1	11.6 - 28.1	_	0.5	
Birmingham Fire Station #32	38.5	7.64 - 38.5	8.79	2.64 - 8.79	2.15	ND - 1.46 ND - 2.15	ND ND	ND ND	49.5	10.3 - 49.5		5.9	
Highland Lakes Brisstol Lane	54.0	25.6 - 54.0	15.0	4.99 - 15.0	6.53	1.18 - 6.53	ND ND	ND ND	67.6	31.7 - 67.6		8.0	
Hoover Fire Station #2	36.4	10.0 - 36.4	11.5	3.19 - 11.5	3.14	ND - 3.14	ND ND	ND ND	51.0	13.2 - 51.0			
Moody Fire Station #2	61.1	26.3 - 61.1	6.40	4.37 - 6.40	3.14 ND	ND - 3.14 ND	ND ND	ND ND	67.5	31.1 - 67.5	32.6 40.9		
Shades Crest Grocery	59.6	21.5 - 59.6	18.4	4.37 - 6.40	6.18	1.18 - 6.18	ND ND	ND ND	84.2	27.4 - 84.2			
											52.5		
Western	41.7	18.3 - 41.7	15.4	3.09 - 15.4	5.08	ND - 5.08	ND	ND	62.1	24.2 - 62.1	****		
Birmingham Fire Station #18	35.8	10.3 - 35.8	15.4	1.86 - 15.4	5.22	ND - 5.22	ND	ND	56.5	12.1 - 56.5		7.2	
Pleasant Grove Post Office	48.6	17.5 - 48.6	15.8	3.60 - 15.8	5.41	ND - 5.41	ND	ND	65.3	21.1 - 65.3		6.9	
Shannon Fire Station	78.4	23.3 - 78.4	23.7	5.17 - 23.7	8.11	1.25 - 8.11	ND	ND	110	29.7 - 110	j 5	5.9	


Consecutive System Meters													
Meters	Monochloroacetic Acid (µg/L)		Monobromoacetic Acid (μg/L)		Dichloroacetic Acid (μg/L)		Trichloroacetic Acid (µg/L)		Dibromoacetic Acid (μg/L)		Total Haloacetic Acids (HAA₅) (μg/L)		LRAA Total Haloacetic Acids (HAA _s) (µg/L)
	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Average per Site
West Jefferson - 4251 Flat Top Road, 35073	ND	ND	ND	ND	26.3	9.76 - 26.3	18.1	6.19 - 18.1	2.00	ND - 2.00	45.7	16.0 - 45.7	31.6
Brookside #1 - 1298 Brookside Coalburg Road, 35181	ND	ND	ND	ND	16.0	10.7 - 16.0	13.0	9.90 - 13.0	2.00	ND - 2.00	31.0	20.6 - 31.0	25.7
Brookside #2 - 2299 Robert Road, 35214	ND	ND	4.00	ND - 4.00	20.2	10.9 - 20.2	14.5	9.56 - 14.5	2.00	ND - 2.00	35.7	20.5 - 35.7	28.0
Pine Bluff #1 - 22495 State Highway 79, 35172	1.00	ND - 1.00	4.00	ND - 4.00	15.0	10.4 - 15.0	14.9	12.0 - 14.9	ND	ND	34.0	23.2 - 34.0	27.5
Pine Bluff #2 - 9 Good News Road, 35172	2.00	ND - 2.00	5.00	ND - 5.00	17.8	10.2 - 17.8	21.4	9.55 - 21.4	ND	ND	39.1	19.7 - 39.1	29.7
Mulga #1 - 316 Templeton Road, 35218	ND	ND	ND	ND	15.7	10.6 - 15.7	12.9	8.11 - 12.9	1.00	ND - 1.00	27.3	18.7 - 27.3	22.9
Mulga #2 - 601 Pleasant Grove Road, 35127	ND	ND	ND	ND	22.1	7.00 - 22.1	16.3	5.61 - 16.3	ND	ND	38.4	13.5 - 38.4	23.3
Graysville #1 - 2395 Forestdale Blvd, 35214	ND	ND	ND	ND	14.7	10.0 - 14.7	11.1	8.00 - 11.1	2.00	ND - 2.00	25.3	20.0 - 25.3	22.8
Graysville #2 - 4251 Flattop Road, 35073	ND	ND	ND	ND	16.2	8.77 - 16.2	12.9	7.40 - 12.9	2.00	ND - 2.00	26.2	16.2 - 26.2	22.6
Remlap - 942 Ridgewood Drive, 35133	2.00	ND - 2.00	2.00	ND - 2.00	17.6	14.0 - 17.6	20.6	11.5 - 20.6	ND	ND	38.2	27.7 - 38.2	32.8
UAB/VA - 1813 6th Avenue South, 35233	ND	ND	ND	ND	17.8	6.29 - 17.8	12.0	5.18 - 12.0	ND	ND	29.8	11.5 - 29.8	22.4
Meters	Chloroform (µg/L)		Bromodichloromethane (μg/L)		Dibromochloromethane (μg/L)		Bromoform (μg/L)		Total Trihalomethanes (TTHM) (μg/L)		LRAA Total Trihalomethanes (TTHM) (μg/L)		
	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Highest	Range	Average	per Site	
West Jefferson - 4251 Flat Top Road, 35073	48.0	25.7 - 48.0	14.9	3.54 - 14.9	5.48	ND - 5.48	ND	ND	66.0	29.3 - 66.0	4	8.3	
Brookside #1 - 1298 Brookside Coalburg Road, 35181	40.4	16.5 - 40.4	15.1	2.93 - 15.1	7.28	ND - 7.28	ND	ND	57.8	19.5 - 57.8	40.6		
Brookside #2 - 2299 Robert Road, 35214	34.4	19.9 - 34.4	14.3	3.22 - 14.3	6.24	ND - 6.24	ND	ND	46.9	24.5 - 46.9	37.9		
Pine Bluff #1 - 22495 State Highway 79, 35172	23.2	16.1 - 23.2	4.11	2.65 - 4.11	ND	ND	ND	ND	27.4	18.7 - 27.4	21.7		
Pine Bluff #2 - 9 Good News Road, 35172	24.2	17.0 - 24.2	4.53	2.94 - 4.53	ND	ND	ND	ND	28.7	19.9 - 28.7	23.3		
Mulga #1 - 316 Templeton Road, 35218	33.7	17.6 - 33.7	15.3	2.83 - 15.3	7.60	ND - 7.60	ND	ND	50.6	20.5 - 50.6	37.4		
Mulga #2 - 601 Pleasant Grove Road, 35127	58.0	15.4 - 58.0	22.3	3.63 - 22.3	8.55	ND - 8.55	ND	ND	88.8	19.0 - 88.8	54.5		
Graysville #1 - 2395 Forestdale Blvd, 35214	34.6	17.0 - 34.6	12.9	3.20 - 12.9	5.66	ND - 5.66	ND	ND	44.7	26.3 - 44.7	37.3		
Graysville #2 - 4251 Flattop Road, 35073	44.2	13.6 - 44.2	15.2	2.45 - 15.2	6.90	ND - 6.90	ND	ND	61.7	16.1 - 61.7	41.8		
Remlap - 942 Ridgewood Drive, 35133	36.8	22.4 - 36.8	5.48	3.43 - 5.48	ND	ND	ND	ND	42.3	25.8 - 42.3	33.4		
UAB/VA - 1813 6th Avenue South, 35233	30.4	9.41 - 30.4	10.8	3.04 - 10.8	3.18	ND - 3.18	ND	ND	43.7	12.5 - 43.7	32.8		

3600 FIRST AVENUE N. BIRMIGNHAM, AL 35222

An electronic, as well as a Spanish version of this document is available at www.bwwb.org. Click Water Quality Report to see the reports available for download.

Una versión electrónica , así como el español de este documento está disponible en www.bwwb.org.
Haga clic en la Calidad del Agua para ver los informes disponibles para su descarga.

